Environmental STEM in Urban Context

Christine Benita Elementary Science Specialist Seattle School District

Boris Srdar, FAIA Design Principal NAC Architecture

Seattle, Hazel Wolf K-8

Mart I

It happened here [on a 3.2 acre triangular site]

It can happen anywhere... Correct?

If YES, let us see how it happened If NOT.....Why Not?

Optimistic take: YES, it can happen anywhere

Key ingredients: Awareness of the community about our environment

Community commitment for project support

How did it happen at Hazel Wolf?

Founding Process:

A strong vision - Unique program educationally

Environmental program as a glue for a K-8 school

Community Support: Interim condition

Placement on the Bond for a permanent home

Keys to Success: Teachers on the same page

Teacher training

Founding Process: Unique program educationally Environmental program as a glue for a K-8 school

Accessible for All Ages

K-2Soils and geologyFallen leaf scavenger huntSit Spots: observing and sketching

History of native cultures

- 3–5 Jellyfish sculptures Earthquake/structures analysis Species population statistics

Water testing for pollutants Soil filtration tests Sit Spots: creative writing/poetry Native plant cataloguing and web design QR code plant tags

Founding Process: Unique program educationally Environmental program as a glue for a K-8 school

	art	Jellyfish sculptures Sit Spots: observing and sketching	
Accessible for All Subjects	science	Water testing for pollutants Soil filtration tests Native plant cataloguing	
	reading/ writing	Sit Spots: creative writing/poetry Web design	
	math	Earthquake/structures analysis Species population statistics	
	tech	Web design QR code plant tags	
	history	History of native cultures Soils and geology	

Community Support:

Interim condition

Placement on the Bond for a permanent home

Keys to Success:

Teachers on the same page

Teacher training - connect outdoor indoor teaching

Keys to Success:

Teachers on the same page

Teacher training – connect outdoor indoor teaching

A Mission Driven School

Design Goals:

Provide as many varied multi-sensory individual experiences on the site as

possible

Maximize the use of the site for outdoor learning

A Mission Driven School

Design Goals:

Maximize the use of the site for outdoor learning

Design Mindset: Purpose driven custom design Every unusual solution should be explored

A Mission Driven School

Design Goals: Provide as many varied multi-sensory individual experiences on the site "as possible"

Key Educational Philosophy

- "We teach everything through an environmental lens"
- "We explain curriculum through understanding of the earth systems"

Research foundation

Empirical evidence

Key Educational Philosophy

Social, emotional, and physical benefits of exposure to nature

Outdoor education is the **ultimate teachable moment**.

Key Educational Philosophy Research foundation: Benefits of outdoor learning

Evidence:

Less crime in housing with trees

Hospitals patients recover faster in contact with nature

Prisons with trees are less violent

Introduction of environmental program in a school in Texas led to less disciplinary reports in the following year

Key Educational Philosophy

social, emotional, physical benefits

nature & child development

Key Educational Philosophy

Selection of Supporting Research

Fuller, R.A., Irvine, K.N., Devine-Wright, P., Warren, P.H., & Gaston, K.J. (2007). Psychological benefits of greenspace increases with biodiversity. *Biology Letters*, 3, 390-394.

Kellert, S. R. (2012). *Building for life: Designing and understanding the human-nature connection*. Island press.

Maller, C., Townsend, M., Brown, P., & St Leger, L. (2002). *Healthy parks, healthy people: The health benefits of contact with nature in a park context: a review of current literature.* Parks Victoria, Deakin University Faculty of Health & Behavioural Sciences.

Townsend, M., & Weerasuriya, R. (2010). *Beyond Blue to Green: The benefits of contact with nature for mental health and well-being*. Burwood: Deakin University.: Deakin Australia.

Nature can help us achieve **skill integration** and **social-emotional development.**

Nature can lead to **real-world experience & application** and **better grades.**

Nature increases

engagement & enthusiasm

for learning.

Design Goals: Maximize the use of the site for outdoor learning

- 1 Botanical Garden
- 2 Living Wall
- 3 Learning Terraces
- 4 Nature Cycle Courtyard
- 5 Butterfly Garden

Botanical garden Informal outdoor learning area Community park in the off hours

Botanical garden = informal outdoor learning area = community park in the off hours

Site as a lab Rain garden as a teaching station

Outdoor Indoor Program Connection

Environmental learning outdoors relates to science experiments

Outdoor Indoor Program Connection

Maximize informal learning spaces

Variety of teaching stations Variety of curriculum offering Create a spirit of the place that stimulates students to pursue their inquiries

Maximize informal learning spaces

Create a spirit of the place that stimulates students to pursue their inquiries

Social Emotional Learning

Academic benefits of movement

Outdoor education is the **ultimate teachable moment.**

Social, emotional, and physical benefits of **exposure to nature**

Design Goals

Create school's own ecosystem

Primary School for Sciences & Biodiversity Boulogne-Billancourt, France

Design Goals:

Building envelope as an ecosystem and a teachable moment

Primary School for Sciences & Biodiversity Boulogne-Billancourt, France

Design Goals

Outdoor education is the ultimate teachable moment

Teaching phenology

Primary School for Sciences & Biodiversity Boulogne-Billancourt, France

Design Goals:

Green school design featuring rainwater harvesting for roof-top gardens.

Sidewell Friends Middle School Washington DC, United States

Design Goals:

Key features include water treatment through onsite wetland and rainwater harvesting for roof-top gardens.

Sidewell Friends Middle School Washington DC, United States

Design Goals:

Create school's own food growing education

Farming Kindergarten Bien Hoa, Dong Nai, Vietnam

Design Goals:

Create school's own food growing education

Farming Kindergarten Bien Hoa, Dong Nai, Vietnam

Design Goals:

Maximize the usage of small site by incorporating sustainable features, such as rooftop playgrounds and storm water retention.

Ogden International School of Chicago Chicago, United States

Ogden International School of Chicago Chicago, United States

Design Goals:

Provide a significant increase in density within a tight urban site

MARLBOROUGH PRIMARY SCHOOL,

litt

London, United Kingdom

First High-Rise High School New South Wales, Australia

Design Goals:

Create high-rise social infrastructure with wellbeing and playfulness arising out of the integration of the physical and the environmental

First High-Rise High School New South Wales, Australia

Design Goals:

Create a cooler environmentally friendly building

School of Arts, Singapore, Singapore

Design Goals:

Create urban oasis to provide outdoor learning in the dense urban living environment

QIDE ELEMENTARY SCHOOL, Hong Kong, China

Design Goals:

Create a "sustainable learning landscape" to promote optimal learning by establishing a deep connection with the surrounding landscape and local community

Hong Kong Island School Competition Hong Kong, China

Design Goals:

Create an environment in which students can learn valuable lessons in sustainable living.

Green School, Stockholm, Sweden

Design Goals:

Create an environment in which students can learn valuable lessons in sustainable living.

Green School, Stockholm, Sweden

A catalyst for an experientially more inspiring learning environments

Space that creates opportunity to spark innovation Get students to ask questions and pursue those questions

Creativity Collaboration Communication Critical Thinking

STEM standards: New engineering standards

3 Dimensions:

Disciplinary Core Ideas Science and Engineering Practices

Crosscutting Concepts

Disciplinary Core Ideas

PHYSICAL SCIENCES

PS1: Matter and Its Interactions

PS2: Motion and Stability: Forces and Interactions

PS3: Energy

PS4: Waves and Their Applications in Technologies for Information Transfer

LIFE SCIENCES

- LS1: From Molecules to Organisms: Structures and Processes
- LS2: Ecosystems: Interactions, Energy, and Dynamics
- LS3: Heredity: Inheritance and Variation of Traits
- LS4: Biological Evolution: Unity and Diversity

EARTH AND SPACE SCIENCES

ESS1: Earth' s Place in the Universe ESS2: Earth' s Systems ESS3: Earth and Human Activity

ENGINEERING, TECHNOLOGY, AND APPLICATIONS OF SCIENCE ETS1: Engineering Design ETS2: Links Among Engineering, Technology, Science, and Society

Science and Engineering Practices

- 1. Asking Questions (for science) and Defining Problems (for engineering)
- 2. Developing and Using Models
- 3. Planning and Carrying Out Investigations
- 4. Analyzing and Interpreting Data
- 5. Using Mathematics and Computational Thinking
- 6. Constructing Explanations (for sci) and Designing Solutions (for eng)
- 7. Engaging in Argument from Evidence
- 8. Obtaining, Evaluating, and Communicating Information

www.nextgenscience.org

Crosscutting Concepts

- 1. Patterns
- 2. Cause and Effect: Mechanisms and Explanation
- 3. Scale, Proportion, and Quantity
- 4. Systems and System Models
- 5. Energy and Matter: Flows, Cycles, and Conservation
- 6. Structure and Function
- 7. Stability and Change

So others can do it.....we can do it....

What are we waiting for?

